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Abstract
The Korteweg–de Vries (KdV) equation with self-consistent sources (KdVES)
is used as a model to illustrate this method. We present a generalized binary
Darboux transformation (GBDT) with an arbitrary time-dependent function for
the KdVES as well as the formula for N-times repeated GBDT. This GBDT
provides non-auto-Bäcklund transformation between two KdV equations with
different degrees of sources and enables us to construct more general solutions
with N arbitrary t-dependent functions. By taking the special t-function,
we obtain multisoliton, multipositon, multinegaton, multisoliton–positon,
multinegaton–positon and multisoliton–negaton solutions of the KdVES.

PACS numbers: 02.30.lk, 05.45.Yv

1. Introduction

Soliton equations with self-consistent sources (SESCS) have attracted some attention (see, for
example, [1–14]). The SESCS can be solved by the inverse scattering method and N-soliton
solutions of some SESCSs have been obtained [1–15]. However, since the explicit time part
of the Lax representation for SESCS was not found, the determination of the evolution for
scattering data was quite complicated in [1–14]. In recent years, we have presented the time
part of the Lax representation for the SESCS by means of the adjoint representation of the
soliton equation [16, 17]. This enables us to determine the evolution of scattering data in
a simple and natural way [15] and to construct the Darboux transformation for the SESCS
[18, 19]. It has been pointed out in [18, 19] that the normal Darboux transformation for the
SESCS, which provides auto-Bäcklund transformation, cannot be used to construct a solution
of the SESCS from the trivial solution. In [18, 19] we have presented a special type of binary
Darboux transformation for some SESCSs, which offers non-auto-Bäcklund transformation
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between soliton equations with different degrees of sources and can be used to obtain N-soliton
solutions. To our knowledge, no other solutions, except the soliton solution, for the SESCS
have been investigated.

In recent years, positon and negaton solutions of soliton equations have been widely
studied (see [20] and references therein). The positon solutions of soliton equations are
long-range analogues of solitons and slowly decreasing, oscillating solutions, and possess a
so-called supertransparent property; the corresponding reflection coefficient is zero and the
transmission coefficient is unity [20]. The negaton solution of the Korteweg–de Vries (KdV)
equation has been studied in [21].

In this paper, we use the KdV equation with self-consistent sources (KdVES) as a model
to illustrate this idea. We present generalized binary Darboux transformation (GBDT) with
arbitrary t-dependent functions for the KdVES and the formula for N-times repeated GBDT
which contains N arbitrary t-dependent functions. This GBDT offers a non-auto-Bäcklund
transformation between KdV equations with different degrees of sources and enables us
to find the more general solution with arbitrary t-functions for the KdVES. By taking the
special t-function, we obtain multisoliton, multipositon, multinegaton, multisoliton–positon,
multisoliton–negaton and multipositon–negaton solutions of the KdVES.

This paper is organized as follows. In section 2, we derive the GBDT with an arbitrary
t-dependent function for the KdVES and the formula for N-times repeated GBDT with an N
arbitrary t-dependent function. Using this GBDT gives rise to some general solutions of the
KdVES including the multisoliton solution as a special case. In sections 3 and 4, multipositon
and multinegaton solutions of the KdVES are obtained, respectively. Finally, in section 5,
multisoliton–positon, multisoliton–negaton and multipositon–negaton solutions of the KdVES
are presented.

2. The generalized binary Darboux transformation

The KdV equation with sources of degree n (KdVES) is defined by [3, 5, 14, 15, 18]

ut + 6uux + uxxx + 4
n∑

j=1

ϕjϕj,x = 0 (2.1a)

ϕj,xx + (λj + u)ϕj = 0 j = 1, . . . , n (2.1b)

where λj are distinct real constants. Let �n = (ϕ1, . . . , ϕn). The Lax representation for
equation (2.1) can be found from the adjoint representation for the KdV equation [16–18]

φxx + (λ + u)φ = 0 (2.2a)

φt = An(λ, u,�n)φ (2.2b)

where

An(λ, u,�n)φ = uxφ + (4λ − 2u)φx +
n∑

j=1

ϕj

λj − λ
W(ϕj , φ)

and W(ϕj , φ) ≡ ϕjφx − ϕj,xφ is the usual Wronskian determinant. It is shown that the
well-known Darboux transformation (DT) for the KdV equation can be applied to the KdVES
[18]. Let f be a solution of equation (2.2) with λ = ξ , then equation (2.2) is covariant under
the DT defined as [18]
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φ̃ = W(f, φ)

f
(2.3a)

ũ = u + 2∂2
x ln f (2.3b)

ϕ̃j = 1√
λj − ξ

W(f, ϕj )

f
j = 1, . . . , n (2.3c)

i.e., φ̃, ũ and �̃n = (ϕ̃1, . . . , ϕ̃n) satisfy

φ̃xx + (λ + ũ)φ̃ = 0 (2.4a)

φ̃t = An(λ, ũ, �̃n)φ̃ (2.4b)

and ũ, �̃n is a new solution of equation (2.1). Through this DT, we can find two linearly
independent solutions of equation (2.4) with λ = ξ . First, equation (2.3a) gives a solution of
equation (2.4) with λ = ξ

f̃ 1 = C

f
(2.5)

where C is some constant. Secondly, letting g be a solution of equation (2.2) with λ = η �= ξ ,
we define

ω(f, g) = W(f, g)

ξ − η
ω(f, f ) ≡ lim

η→ξ

W(f (ξ), f (η))

ξ − η
= −W(f, ∂ξf ).

According to equation (2.3a)

f̃ = lim
η→ξ

W(f (ξ), f (η))

(ξ − η)f (ξ)
= 1

f
ω(f, f )

is another solution of equation (2.4) with λ = ξ . Therefore

h̃ ≡ f̃ + f̃ 1 = 1

f
[C + ω(f, f )] (2.6)

is also a solution of equation (2.4) with λ = ξ . Using f and h̃ consecutively, the two-times
action of DT (2.3) yields the following binary DT

φ̄ = 1

λ − ξ

W(̃h, φ̃)

h̃
= φ − f

C + ω(f, f )
ω(f, φ) (2.7a)

ū = ũ + 2∂2
x ln h̃ = u + 2∂2

x ln[C + ω(f, f )] (2.7b)

ϕ̄j = 1√
λj − ξ

W(̃h, ϕ̃j )

h̃
= ϕj − f

C + ω(f, f )
ω(f, ϕj ) j = 1, . . . , n. (2.7c)

Then, the system (2.2) is covariant under the binary DT (2.7) and ū, �̄n ≡ (ϕ̄1, . . . , ϕ̄n)

satisfies the KdVES (2.1).
Substituting equation (2.7a) into equation (2.2b) gives

φ̄t = φt − ftω(f, φ)

C + ω(f, f )
+

f ∂tω(f, f )

[C + ω(f, f )]2
ω(f, φ) − f ∂tω(f, φ)

C + ω(f, f )
= An(λ, ū, �̄n)φ̄. (2.8)

When substituting equation (2.7) into An(λ, ū, �̄n)φ̄, the last equality holds for any constant
C. In the expression of An(λ, u,�n)φ, there is no derivative with respect to t. So the last
equality holds when C is replaced by e(t), an arbitrary t-function. We have the following
lemma.
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Lemma 2.1. Given u,�n a solution of equation (2.1), if f is a solution of equation (2.2) with
λ = ξ , then the last equality of equation (2.8) holds for C = e(t).

Obviously, under DT defined by equation (2.7) with C replaced by e(t), equation (2.2a)
is still covariant; however, equation (2.2b) is no longer covariant. In fact, we have

Theorem 2.1. Given u,�n as a solution of equation (2.1), let f be a solution of the system
(2.2) with λ = λn+1. Then, the generalized binary DT with an arbitrary t-function defined by

φ̄ = φ − f

e(t) + ω(f, f )
ω(f, φ) (2.9a)

ū = u + 2∂2
x ln[e(t) + ω(f, f )] (2.9b)

ϕ̄j = ϕj − f

e(t) + ω(f, f )
ω(f, ϕj ) j = 1, . . . , n (2.9c)

and

ϕ̄n+1 =
√

e′(t)f
e(t) + ω(f, f )

(2.9d )

transforms equation (2.2) into

φ̄xx + (λ + ū)φ̄ = 0 (2.10a)

φ̄t = An+1(λ, ū, �̄n+1)φ̄ (2.10b)

and ū, �̄n+1 ≡ (ϕ̄1, . . . , ϕ̄n+1), satisfy the KdV equation with sources of degree n + 1

ūt + 6ūūx + ūxxx + 4
n+1∑
j=1

ϕ̄j ϕ̄j,x = 0 (2.11a)

ϕ̄j,xx + (λj + ū)ϕ̄j = 0 j = 1, . . . , n + 1 (2.11b)

Proof. h̃ defined by equation (2.6) with C replaced by e(t) still satisfies equation (2.4a). This
implies that equations (2.10a) and (2.11b) hold. Substituting equation (2.9a) into the left-hand
side of equation (2.10b) and using lemma 2.1 and equation (2.9d ) gives rise to

φ̄t = An(λ, ū, �̄n)φ̄ +
e′(t)ω(f, φ)f

[e(t) + ω(f, f )]2
= An(λ, ū, �̄n)φ̄

+
W(ϕ̄n+1, φ̄)

λn+1 − λ
ϕ̄n+1 = An+1(λ, ū, �̄n+1)φ̄.

Then the compatibility condition of equation (2.10) leads to equation (2.11a). This completes
the proof.

The GBDT defined by equation (2.9) contains an arbitrary t-function. The flexibility
of the choices of e(t) and f enables us to construct some general solutions with arbitrary
t-functions of the KdVES, some of which cannot be constructed through the original binary
DT.

For m solutions of equation (2.2), g1, . . . , gm and m arbitrary t-functions e1(t), . . . , em(t),
we define two types of Wronskian determinant

W1(g1, . . . , gm; e1, . . . , em) = det F W2(g1, . . . , gm; e1, . . . , em−1) = det G
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where

Fij = δij ei(t) + ω(gi, gj ) i, j = 1, . . . ,m

Gij = δijei(t) + ω(gi, gj ) i = 1, . . . ,m − 1 j = 1, . . . ,m

Gmj = gj j = 1, . . . ,m.

We have the following formula of N-times repeated GBDT. �

Theorem 2.2. Given u,�n as a solution of equation (2.1), let f1, . . . , fN be solutions of
equation (2.2) with λ = λn+1, . . . , λn+N , respectively. Then the N-times repeated GBDT with
N-arbitrary t-functions e1(t), . . . , eN (t) defined by

φ̄ = W2(f1, . . . , fN , φ; e1, . . . , eN )

W1(f1, . . . , fN ; e1, . . . , eN )
(2.12a)

ū = u + 2∂2
x ln W1(f1, . . . , fN ; e1, . . . , eN) (2.12b)

ϕ̄j = W2(f1, . . . , fN , ϕj ; e1, . . . , eN )

W1(f1, . . . , fN ; e1, . . . , eN )
j = 1, . . . , n (2.12c)

and

ϕ̄n+j =
√

e′
j (t)W2(f1, . . . , fj−1, fj+1, . . . , fN , fj ; e1, . . . , ej−1, ej+1, . . . , eN )

W1(f1, . . . , fN ; e1, . . . , eN )

j = 1, . . . , N (2.12d )

transforms equation (2.2) into equation (2.2) with n replaced by n + N and ū,�n+N satisfy the
KdVES of degree n + N , i.e. equation (2.1) with n replaced by n + N .

The proof of this theorem is completely similar to that given in [18] and we omit it.

Example. N-soliton solution.

We take u = 0 as the initial solution of equation (2.1) with n = 0 and let λj = −κ2
j < 0,

κj > 0, j = 1, . . . , N,

fj = eκj x−4κ3
j t ej (t) = e2αj t j = 1, . . . , N

then

ω(fi, fj ) = 1

κi + κj

e(κi+κj )x−4(κ3
i +κ3

j )t i, j = 1, . . . , N.

The N-soliton solutions of equation (2.1) with n = N and λj = −κ2
j < 0, j = 1, . . . , N, is

given by

u = 2∂2
x ln W1(f1, . . . , fN ; e1, . . . , eN ) (2.13a)

ϕj =
√

e′
j (t)W2(f1, . . . , fj−1, fj+1, . . . , fN , fj ; e1, . . . , ej−1, ej+1, . . . , eN )

W1(f1, . . . , fN ; e1, . . . , eN)

j = 1, . . . , N (2.13b)

which was obtained in [14, 15, 18].
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3. Positon solutions

Hereafter we always take the simple and special choice of e(t) as

ej (t) = aj t + bj (3.1)

where aj �= 0 and bj are real constants.

3.1. One-positon solution and the supertransparency

We take u = 0 as the initial solution of equation (2.1) with n = 0. Let f be an oscillating
solution of equation (2.2) with u = 0, n = 0 and λ = λ1 = κ2 > 0, κ > 0,

f = sin � � = κ(x + x1 + 4κ2t) (3.2)

where x1 = x1(κ) is a real differential function of κ . Then the GBDT (2.9) gives

u = 2∂2
x ln(2κγ − sin 2�) = 32κ2 sin �(κγ cos � − sin �)

(2κγ − sin 2�)2
(3.3a)

ϕ1 = 4κ
√

a sin �

2κγ − sin 2�
(3.3b)

with

γ = ∂κ� + 2e(t) = x + x̃1 + (12κ2 + 2a)t + 2b x̃1 = x1 + κ∂κx1(κ)

which gives the one-positon solution of the KdVES (2.1) with n = 1, λ1 = κ2 corresponding
to the one-positon solution for the KdV equation in [20, 21].

Based on formulae (3.3), we can analyse the basic features of the one-positon solution of
equation (2.1) in the same way as in [20]. We can conclude that the one-positon solution of
equation (2.1) with n = 1 has the same shape, the same asymptotic behaviour when x → ±∞
and the same scattering data as the one-positon solution of the KdV equation, i.e. long-range
analogues of solitons of the KdVES and slowly decreasing, oscillating solutions. Similarly,
under a proper choice of scattering data, the corresponding reflection coefficient is zero and
the transmission coefficient is unity.

3.2. Two-positon solution and multipositon solutions

The two-positon solution of equation (2.1) with n = 2, λj = κ2
j > 0, κj > 0, j = 1, 2, is

given by equation (2.13) with N = 2, ej = aj t + bj

fj = sin �j �j = κj

(
x + xj + 4κ2

j t
)

Im xj = 0 j = 1, 2

W1(f1, f2; e1, e2) = (16κ1κ2)
−1(2κ1γ1 − sin 2�1)(2κ2γ2 − sin 2�2)

− (
κ2

1 − κ2
2

)−2
(κ2 sin �1 cos �2 − κ1 sin �2 cos �1)

2 (3.4a)

W2(f2, f1; e2) = (4κ2)
−1 sin �1(2κ2γ2 − sin 2�2)

− (
κ2

1 − κ2
2

)−1
sin �2(κ2 sin �1 cos �2 − κ1 sin �2 cos �1) (3.4b)

W2(f1, f2; e1) = (4κ1)
−1 sin �2(2κ1γ1 − sin 2�1)

− (
κ2

1 − κ2
2

)−1
sin �1(κ2 sin �1 cos �2 − κ1 sin �2 cos �1) (3.4c)

γj = x + x̃j +
(
12κ2

j + 2aj

)
t + 2bj x̃j = xj + κj∂κj

xj (κj ) j = 1, 2.
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Using equation (3.4), we obtain the asymptotic behaviour of the solution for fixed γ1 as
t → ±∞ (which implies γ2 → ∞)

u = 2∂2
x ln(2κ1γ1 − sin 2�1)

[
1 + O

(
γ −1

2

)]
ϕ1 = 4κ1

√
a1 sin �1

2κ1γ1 − sin 2�1

[
1 + O

(
γ −1

2

)]
ϕ2 = O

(
γ −1

2

)
.

When γ2 is fixed and t → ±∞(γ1 → ∞), we have a similar result for the asymptotic
behaviour of the solution. Thus, we have proven that the two positons are totally insensitive to
the mutual collision, even without additional phase shifts, which is intrinsic for the collision
of two solitons. Calculating the corresponding solution of system (2.2), we can prove that
potential is also supertransparent.

The N-positon solution of equation (2.1) with n = N,λj = κ2
j > 0, κj > 0, j =

1, . . . , N, is given by equation (2.13) with ej = aj t + bj ,

fj = sin �j �j = κj

(
x + xj + 4κ2

j t
)

Im xj = 0 j = 1, . . . , N.

Analogously, we see that the N-positon solution at large time decays into the sum of N free
positons and it is also supertransparent.

4. Negaton solutions

4.1. One-negaton solution

Let λ1 = −κ2 < 0, κ > 0 and f be a solution of equation (2.2) with u = 0, n = 0 and λ = λ1,

f = sinh � � = κ(x + x1 − 4κ2t). (4.1)

Then the GBDT (2.9b) and (2.9d ) with e(t) = at + b gives

u = 2∂2
x ln(κγ − sinh � cosh �) = 8κ2 sinh �(sinh � − κγ cosh �)

(κγ − sinh � cosh �)2
(4.2a)

ϕ1 = 2κ
√

a sinh �

κγ − sinh � cosh �
(4.2b)

where

γ = x + x1 + κ∂κx1 − (12κ2 − 2a)t + 2b. (4.2c)

Equation (4.2) gives the [S] one-negaton solution of equation (2.1) with n = 1 and
λ1 = −κ2 < 0, which corresponds to the [S] one-negaton solution for the KdV equation
in [21].

When t is fixed, then we have

u ∼ 8κ2

(
1

cosh2 �
− κγ

sinh � cosh �

)
→ 0 ϕ1 ∼ − κ

√
a

cosh �
→ 0 x → ±∞.

For fixed x, we have the same formula when t → ±∞.

As a function of x, u has a second-order pole and ϕ1 has a first-order pole which locates
at the same point x = xp(t) determined by the equation sinh � cosh � − κγ = 0. Also, it is
easy to see that u(x, t) has two zeros and ϕ1(x, t) has one zero. The shape and the motion of
u(x, t) is the same as that described in [21].

Similarly, if we take f = cosh �, we can obtain the [C] one-negaton.
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4.2. Two-negaton solution and multinegaton solutions

The [S] two-negaton solution of equation (2.1) with n = 2 and λj = −κ2
j < 0, κj > 0,

j = 1, 2 is given by equation (2.13) with N = 2

fj = sinh �j �j = κj

(
x + xj − 4κ2

j t
)

ej (t) = aj t + bj j = 1, 2

W1(f1, f2; e1, e2) = (4κ1κ2)
−1(κ1γ1 − sinh �1 cosh �1)(κ2γ2 − sinh �2 cosh �2)

− (
κ2

1 − κ2
2

)−2
(κ2 sinh �1 cosh �2 − κ1 sinh �2 cosh �1)

2 (4.3)

W2(f2, f1; e2) = (2κ2)
−1 sinh �1(κ2γ2 − sinh �2 cosh �2)

+
(
κ2

1 − κ2
2

)−1
sinh �2(κ2 sinh �1 cosh �2 − κ1 sinh �2 cosh �1) (4.4)

W2(f1, f2; e1) = (2κ1)
−1 sinh �2(κ1γ1 − sinh �1 cosh �1)

+
(
κ2

1 − κ2
2

)−1
sinh �1(κ2 sinh �1 cosh �2 − κ1 sinh �2 cosh �1) (4.5)

γj = x + x̃j − 12κ2
j t + 2aj t + bj x̃j = xj + κj∂κj

xj (κj ) Im xj = 0 j = 1, 2.

In the domain where x + x1 − 4κ2
1 t is fixed and t → ±∞, the asymptotic solution is

u = 2∂2
x ln(κ1γ1 − sinh �1 cosh �1)[1 + O(t−1)]

ϕ1 = 2κ1
√

a1 sinh �1

κ1γ1 − sinh �1 cosh �1
[1 + O(t−1)] ϕ2 = O(t−1).

When x + x2 − 4κ2
2 t is fixed and t → ±∞, we have a similar result for the asymptotic

solution. This estimates show that, in the indicated domain, the leading term of the asymptotic
[S] two-negaton solution is a standard [S] one-negaton solution. In other words, negatons are
totally insensitive to the mutual collision, even without additional phase shifts in contrast to
the solitons collision case.

Similarly we can construct the [C] two-negaton and [SC] two-negaton solutions and find
the same property.

The [S] N-negaton solution of equation (2.1) with n = N and λj = −κ2
j < 0, κj > 0,

j = 1, . . . , N is given by equation (2.13) with ej = aj t + bj

fj = sinh �j �j = κj

(
x + xj − 4κ2

j t
)

Im xj = 0 j = 1, . . . , N.

Analogously, we see that the [S] N-negaton solution at large time decays into the sum of
N [S] free negatons.

5. Multisoliton–positon, multisoliton–negaton and multipositon–negaton solutions

Like the KdV equation, the KdVES also has multisoliton–positon, multisoliton–negaton and
multipositon–negaton solutions. The N-positon M-soliton solutions of equation (2.1) with
n = N + M and λj = κ2

j > 0, j = 1, . . . , N , λN+j = −κ2
N+j < 0, j = 1, . . . ,M are given

by equation (2.13) with N replaced by N + M and

fj = sin �j �j = κj

(
x + xj + 4κ2

j t
)

κj > 0 Im xj = 0

j = 1, . . . , N fN+j = eκN+j (x−4κ2
N+j t) κN+j > 0 j = 1, . . . ,M.

The N-negaton M-soliton solution of equation (2.1) with n = N + M and λj = −κ2
j > 0,

j = 1, . . . , N + M , is given by equation (2.13) with N replaced by N + M and

fj = sinh �j �j = κj

(
x + xj − 4κ2

j t
)

κj > 0 Im xj = 0

j = 1, . . . , N fN+j = eκN+j (x−4κ2
N+j t) κN+j > 0 j = 1, . . . ,M.
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The N-positon M-negaton solution of equation (2.1) with n = N + M and λj = κ2
j > 0,

j = 1, . . . , N , λN+j = −κ2
N+j < 0, j = 1, . . . ,M is given by equation (2.13) with N replaced

by N + M and Im xj = 0

fj = sin �j �j = κj

(
x + xj + 4κ2

j t
)

κj > 0 j = 1, . . . , N

fN+j = sinh �N+j �N+j = κN+j

(
x + xN+j − 4κ2

N+j t
)

κN+j > 0 j = 1, . . . ,M.

We can analyse the interaction of the soliton and the positon, the soliton and the negaton,
the positon and the negaton in a similar way as in [20]. We would like to point out that the
results of the analysis will be almost the same as in [20] and we omit it.

6. Conclusions

We present N-times repeated GBDT with N arbitrary t-functions which provides non-auto-
Bäcklund transformation between two KdV equations with n-degrees of sources and (n + N)-
degrees of sources. This N-times repeated GBDT enables us to construct some general
solutions with N arbitrary t-functions for the KdVES. By making a special choice of t-functions,
we obtain the multisoliton, multinegaton, multipositon, multisoliton–positon, multisoliton–
negaton and multipositon–negaton solutions for the KdVES. This method can be applied to
other SESCSs.
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